Напряжённость электрического поля

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду: 

 — энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах: 

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.         

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

  

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше:   →     

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности:     —   Напряженность поля равна 1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Эквипотенциальные поверхности.

ЭПП — поверхности равного потенциала.

Свойства ЭПП:

— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (!!!) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

author24-min.png

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.

Содержание:

  •  

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10-9 Кл.

1-1.jpg

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер  за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц; 

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной  области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность  взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

а) изолированные заряды
б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли. Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

#1. Физическая величина измеряемая в кулонах?

Электрический заряд обозначается через q и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

#2. Какие пары электрических зарядов будут притягиваться к друг другу?

Одноименные заряды отталкиваются, а разноименные – притягиваются.

#3. … — это работа совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

Результат

Отлично!Попытайтесь снова(Содержание:

Разность потенциалов

Для того чтобы понять связь между напряженностью и потенциалом, нужно рассмотреть некоторые определения. Так, указанный параметр представляет собой скалярную величину, какая равна соотношению между энергией заряда в поле к непосредственно заряду. То есть, f=W/q есть энергетический тип характеристики поля в определенной точке. Для разности потенциалов формула имеет вид U=f1-f2=A/q. Здесь A является работой, затрачиваемой на переходы зарядного элемента по поверхности, а q есть кулоновский заряд.

При этом электростатическая величина не зависит от количества заряда, каков находится в поле. То есть, энергия будет зависеть от выбора координатной системы и находится с точностью до постоянной. В зависимости от условий задачи за начало отсчета выбирается один из рассматриваемых вариантов:

  1. Потенциал планеты Земля.
  2. Бесконечно удаленная точка поля, которой можно обозначить любую часть пространства.
  3. Отрицательная пластина емкостного или аналогичного конденсатора.

Численно он будет равняться работе по перемещению единичного плюсового заряда из точки электрического поля через бесконечность. Единица измерения указанного электрического параметра выражается в вольтах.

Разность потенциалов это в физике есть напряжение, которое также входит в раздел электрической динамики. Под ним понимают разницу значений в начальной и финальной точке траектории. Оно численно эквивалентно работе электростатического поля при перемещениях единичного положительного заряда вдоль силовых линий.

Физическая связь

Формула напряженности имеет вид E=U/delta (d). Это обозначает скорость изменения параметра вдоль направления d. Из указанного соотношения можно отметить:

  • Вектор напряженности всегда направляется на уменьшение электрического и динамического потенциалов.
  • Электрическое поле появляется в те моменты, когда можно связать разность потенциалов.
  • Напряженность поля равняется соотношению вольта к метру, если между 2 точками на расстоянии 1 м друг от друга имеется разность в 1 В.

Для равномерно распределенного показателя важно наличие эквипотенциальных поверхностей. Их свойства заключаются в том, что работа при перемещении заряда вдоль такой поверхности не происходит, а вектор напряженности перпендикулярно расположен к ЭПП в любой точке.

Именно благодаря такому параметру можно отыскать некоторые физические величины. Напряженность помогает установить изменение скорости потенциального перемещения вдоль линий магнитного поля во времени. Энергетические характеристики используют в других разделах электродинамики и физики.

Неоднозначность определения

Так как величина определяется с точностью до произвольной постоянной (при этом все величины не изменятся), физический смысл имеет только разность, а не сама физическая единица.

При этом все остальные заряды по модулю при таких операциях как бы заморожены. Перемещение чаще всего воображаемое, хотя если остальные заряды закреплены или пробный очень мал, и при этом переносится относительно быстро, то формула определения разности потенциальных изменений верна.

Иногда для того, чтобы убрать неоднозначность, стоит применить некоторые естественные условия. Нередко такую физическую величину определяют так, чтобы она была равна нулю на бесконечности для любого числа точечных зарядов. Тогда для всех конечных систем зарядов выполнится аналогичное условие, а над константой можно не особо задумываться и принимать любую точку.

Также некоторые сложности имеются при употреблении терминов напряжение и электрический потенциал. Они имеют разный смысл, при этом нередко употребляются как синонимичные для электростатического потенциала. При неимении изменяющихся магнитных полей напряжение будет равняться разности потенциалов.

Еще тесты

Читайте также

Равноускоренное движение — формулы и примеры задач с решениямиУчебные фильмы по физике для школьников — список обучающих и научно-популярных работУдельная теплота сгорания — формула, физический смысл и решение задачИстория изобретения радио — основные принципы работы, виды и значение открытия

Законом Кулона описывается взаимодействие заряженных частиц. Однако большинство сил, с которыми мы работали, возникает при взаимодействии тел посредством контакта (т.е. тела касаются друг друга). В случае электромагнитного взаимодействия контакта нет, тогда взаимодействие происходит посредством неких невидимых элементов. Тогда взаимодействия между частицами вещества  и удалёнными друг от друга макроскопическими телами осуществляются через посредство физических полей, которые создаются этими частицами или телами в окружающем пространстве. В случае с заряженными частицами, эти поля назовём электромагнитными.

Тогда логика электромагнитного взаимодействия такова: заряд  создаёт вокруг себя электромагнитное поле, которое, в свою очередь, действует на любой другой заряд , находящийся на любом расстоянии от источника.

Закон Кулона описывает взаимодействие между двумя зарядами:

(1)

  • где
    • ,  — модули взаимодействующих зарядов,
    • — расстояние между центрами взаимодействующих зарядов,
    • Н*м/Кл — постоянная.

Закон Кулона. Пробный заряд

Рис. 1. Закон Кулона. Пробный заряд

Сила (1) зависит от обоих зарядов, что не позволяет толком описать электрическое поле, создаваемое каждым из взаимодействующих частиц. Тогда придумаем немного другую систему: возьмём пробный заряд  — некий малый заряд, который не будет искажать поле исследуемого нами заряда . Поместим пробный заряд в различные точки пространства рядом с исследуемым нами зарядом и проиллюстрируем силы Кулона (рис. 1).

В принципе, значение силы Кулона можно найти в любой точке пространства, однако данные силы зависят как от заряда источника, так и от значения пробного заряда. Введём новую переменную, поделив значение силы Кулона на значение пробного заряда:

(2)

  • где
    • — вектор напряжённости электрического поля.

Подставим силу Кулона в (1):

(3)

Исходя из (3), можно заключить, что напряжённость электрического поля зависит от заряда источника поля и точки наблюдения, описываемой расстоянием от заряда (рис. 2).

Напряжённость электрического поля

Рис. 2. Напряжённость электрического поля

Т.е. напряжённость электрического поля — параметр, описывающий поле, создаваемое зарядом-источником. Значение напряжённости электрического поля позволяет оценить сильно или слабо будет действовать поле на заряд, помещённый в него. Размерность  — В/м.

Исходя из (3), можно найти напряжённость поля точечного заряда. Напряжённость электрического поля — величина векторная, поэтому для её нахождения необходимо знать как модуль, так и направление вектора. Начнём с модуля:

(4)

Напряжённость электрического поля (направление)

Рис. 3. Напряжённость электрического поля (направление)

Чтобы выяснить направление вектора, воспользуемся уравнением (2). Исходя из (2), можно заключить, что направление напряжённости электрического поля совпадает с направлением силы Кулона, а направление силы Кулона зависит от знака взаимодействующих зарядов. Чтобы не заморачиваться с рассмотрением этих зарядов в каждой задаче, просто договоримся. Если источник поля (заряд) положителен, тогда напряжённость поля направлена от заряда, если источник поля (заряд) отрицателен, тогда напряжённость поля направлена к заряду (рис. 3).

Напряжённость системы зарядов. Принцип суперпозиции напряжённости.

В случае, если в задаче источниками поля являются несколько зарядов, тогда напряжённость в интересующей точке можно найти как векторную сумму напряжённостей от каждого из зарядов:

(5)

  • где
    • — общая (суммарная) напряжённость в точке,
    • — напряжённость в точке от каждого из зарядов.

Важно: поиск векторной суммы чаще всего сопряжён с реализацией теоремы Пифагора, теоремы косинусов или синусов, иногда с проецированиием векторов напряжённости на оси с последующим суммированием.

Принцип суперпозиции напряжённости

Рис. 4. Принцип суперпозиции напряжённости

Проиллюстрируем: пусть в системе присутствует 3 заряда (, , ), найти напряжённость в точке А, находящейся на заданном расстоянии от каждого из них (, , ) (рис. 4).

Пользуясь знаниями о зарядах, расставляем направления напряжённостей от каждого из зарядов, значение модуля каждой из них можем найти из (4). А далее геометрически складываем, получая искомый .

Напряжённость поля бесконечной заряженной плоскости.

Отдельно в школьной физике рассматривается бесконечная (осень большая) заряженная равномерно плоскость (рис. 5).

Напряжённость бесконечной плоскости

Рис. 5. Напряжённость бесконечной плоскости

Напряжённость такой плоскости вблизи её:

(6)

  • где
    • — поверхностная плотность заряда,
    • — диэлектрическая проницаемость среды (табличная величина),
    • Ф/м — электрическая постоянная

В (6) использовалось определение поверхностной плотности заряда:

(7)

  • где
    • — полный заряд плоскости,
    • — площадь поверхности плоскости.

Важно: напряжённость бесконечной плоскости не зависит от расстояния от плоскости.

Напряжённость поля двух бесконечных заряженных плоскостей (конденсатор).

Напряжённость двух бесконечных плоскостей

Рис. 6. Напряжённость двух бесконечных плоскостей

Если составить систему из двух бесконечных плоскостей, заряженных одинаковым по модулю и различным по знаку зарядом (при этом площади плоскостей одинаковы), то общая напряжённость между ними:

(8)

Уравнение (8) характеризует напряжённость внутри конденсатора (рис. 6).

Вывод: в случае, если в задаче требуется найти напряжённость, она дана, достаточно рассмотреть систему. Различных систем, а соответственно, и формул, немного: точечный заряд, шар, система точечных зарядов и бесконечные плоскости. Для каждой системы — своё решение.

Используемые источники:

  • https://www.eduspb.com/node/1761
  • https://electrikam.com/elektricheskij-zaryad-napryazhenie-napryazhennost-potencial/
  • https://nauka.club/fizika/napryazhennost-i-raznostа-potentsialov.html
  • https://www.abitur.by/fizika/teoreticheskie-osnovy-fiziki/elektrostatika/napryazhyonnost-elektricheskogo-polya/