Предел последовательности и функции одной переменной

Что такое предел? Понятие предела

Все без исключения где-то в глубине души понимают, что такое предел, но как только слышат «предел функции» или «предел последовательности», то возникает легкая растерянность.

Не волнуйтесь, это всего лишь от незнаний! Через 3 минуты прочтения ниженаписанного, вы станете грамотнее.

Важно раз и навсегда понять, что имеют в виду, когда говорят о каких-то предельных положениях, значениях, ситуациях и вообще, когда по жизни прибегают к термину предела.

Взрослые люди это понимает интуитивно, а мы разберем на нескольких примерах.

Пример первый

Вспомним строки из песни группы «Чайф»: «… не доводи до предела, до предела не доводи …».

В данном случае по задумке автора предельная ситуацию в отношениях между людьми – это расставание.

Автор как бы предупреждает, что в результате последовательности конкретных действий мы придем к конкретному результату – расставанию.

Пример второй

Наверняка вы слышали фразу о предельно устойчивом положении предмета в пространстве.

Вы сами можете без труда смоделировать такую ситуацию с подручными вещами.

Например, слегка наклоните пластиковую бутылку и отпустите её. Она обратно встанет на днище.

Но есть такие предельные наклонные положения, за границами которых она просто упадет.

Опять же предельное положение в данном случае — это нечто конкретное. Важно это понимать.

Можно много приводить примеров использования термина предела: предел человеческих возможностей, предел прочности материала и так далее.

Ну а с беспределами так вообще каждый день сталкиваемся)))

Но сейчас нас интересуют предел последовательности и предел функции в математике.

Предел числовой последовательности в математике

Предел (числовой последовательности) — одно из основных понятий математического анализа. На понятии предельного перехода базируются сотни и сотни теорем, определяющие современную науку.

Сразу конкретный пример для наглядности.

Допустим есть бесконечная последовательность чисел, каждое из которых в два раза меньше предыдущего, начиная с единицы: 1, ½, ¼, …

Так вот предел числовой последовательности (если он существует) – это какое-то конкретное значение.

В процессе деления пополам каждое последующее значение последовательности неограниченно приближается к определенному числу.

Несложно догадаться, что это будет ноль.

Важно!

Когда мы говорим о существовании предела (предельного значения), это не значит, что какой-то член последовательности будет равен этому предельному значению. Он может лишь только стремиться к нему.

Из нашего примера это более чем понятно. Сколько бы раз мы не делили единицу на два, мы никогда не получим ноль. Будет лишь число в два раза меньше предыдущего, но никак не ноль!

Предел функции в математике

В математическом анализе безусловно самое важное – это понятие предела функции.

Не углубляясь в теорию, скажем следующее: предельное значение функции не всегда может принадлежать области значений самой функции.

При изменении аргумента, функция будет стремиться к какому-то значению, но может его не принять никогда.

Например, гипербола 1/x не имеет значения ноль ни в какой точке, но она неограниченно стремится к нулю при стремлении x к бесконечности.

Калькулятор пределов

Нашей целью не является дать вам какие-то теоретические знания, для этого есть куча умных толстых книжек.

Но мы предлагаем вам воспользоваться онлайн калькулятором пределов, с помощью которого сможете сравнить ваше решение с правильным ответом.

Помимо всего, калькулятор выдает пошаговое решение пределов, применяя зачастую правило Лопиталя с использованием дифференцирования числителя и знаменателя непрерывной в точке или на некотором отрезке функции.

Представим, что подряд выписаны все четные натуральные числа: 2, 4, 6, 8, 10, 12, 14, 18, 18, 20, 22… Это — последовательность четных натуральных чисел. Число 2 — ее первый член, 4 — второй, 6 — третий, 20 — десятый и т. д.

Приведем еще несколько примеров числовых прогрессий:

  • 1, 2, 3, 4, 5… — последовательность натуральных чисел,   
  • 1, 3, 5, 7, 9… — последовательность нечетных натуральных чисел,
  • 1, 1/2, 1/3, 1/4, 1/5… – последовательность чисел, обратных к натуральным.

Последовательности бывают конечные и бесконечные. Конечной, например, есть последовательность однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.

Последовательность всех натуральных чисел — бесконечная. Записывая бесконечную последовательность, после нескольких ее первых членов ставят многоточие. Первый, второй, третий члены последовательности четных натуральных чисел равны соответственно 2, 4, 6. Пишут: a1 = 2, а2 = 4, а3 = 6

А чему равен ее n-й член An? Поскольку каждый член последовательности парных натуральных чисел вдвое больше от своего порядкового номера, то ее n-й член равен 2n, т. е.

An = 2n.

Это формула n-го члена последовательности парных натуральных чисел.

An = 2n − 1

Формула n-го члена последовательности нечетных натуральных чисел.

Если известна формула n-го члена последовательности, то нетрудно вычислить любой ее член. Напишем несколько первых членов последовательности, n-й член которой:

An = n2 + 2

Предоставляя переменной п значения 1, 2, 3, 4, 5… получим первые члены последовательности: 6, 11, 18, 27, 38, 51… Тысячный член этой последовательности а1000 = 10002 + 2 = 1000002.

Гораздо труднее решать обратную задачу — для данной последовательности найти ее n-й член. Например, формула n-го члена последовательности простых чисел: 2, 3, 5, 7, 11, 13… — неизвестна до сих пор, хотя математики искали ее более 2000 лет.

Несколько первых членов последовательности не задают ее однозначно.

Например, существует множество различных последовательностей, первые члены которых 2, 4, 6, 8. В частности, такие первые члены имеют последовательности, n-е члены которых:

  • An = 2n
  • Cn = 2 n + (n − 1) (n − 2) (n − 3) (n − 4)

Из двух соседних членов a1 и a2 последовательности член a2 называют следующим за а1, а а1 — предыдущим по отношению к а2. Последовательность называют растущей, если каждый ее член, начиная со второго, больше предыдущего. Последовательность называется убывающей, если каждый ее член, начиная со второго, меньше предыдущего.

Замечания

Иногда рассматривают также прогрессивности, членами, которых являются различные выражения, функции, фигуры то ​ что. Можно говорить и о последовательности месяцев в году, дней в неделе, букв в слове, фамилий в списке, вагонов в поезде, станций на железной дороге и т. д. Мы дальше будем говорить только о числовых последовательностях, хотя и зовем их коротко последовательностями.

Понятие арифметической прогрессии

Арифметической прогрессией называется прогрессивность, каждый член которой, начиная со второго, равен предыдущему члену, к которому добавляют одно и то же число. Это постоянное для данной последовательности число d называется разницей арифметической прогрессии.

Первый член и разность арифметической прогрессии могут быть какими угодно числами. Арифметическая прогрессия растущая, если ее разница положительная, или нисходящая, если ее разница отрицательная.

Пример нисходящей арифметической прогрессии: 11, 9, 7, 5, 3, 1, −1, −3…

Чтобы получить любой член арифметической прогрессии, начиная со второго, надо к предыдущему члена добавить разницу d. Поэтому если первый член и разность арифметической прогрессии равны соответственно а и d, то первые члены этой арифметической прогрессии:

a1, a1 + d, a1 + 2d, a1 + 3d, a1 + 4d…

Обратите внимание: коэффициент при d на 1 меньше порядкового номера члена прогрессии. Так же находим а6 = а1 + 5d, а7 = а1 + 6d и вообще:

An = a1 + (n − 1)d

Это формула n-го члена арифметической прогрессии. Сумма членов конечной арифметической прогрессии равна полусумме крайних ее членов, умноженной на число членов.

Sn = [(a1 + an) / 2] × n

Примеры задач

Пример 1

В арифметической прогрессии a1 = 4, d = 3. Найдите a20.

В калькуляторе задаем:

  • Первое число: 3
  • Последнее число: 20
  • Разница (шаг): 3

Получаем:

  • Арифметическая прогрессия: 61
  • Сумма членов прогрессии: 650
  • Последовательность: 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61

Проверяем самостоятельно по формулам с теории:

  • a20 = а1 + 19d = 4 + 19 × 3 = 61

Пример 2

Найдите сумму первых двадцати членов арифметической прогрессии 5, 7, 9…

В калькуляторе задаем:

  • Первое число: 5
  • Последнее число: 20
  • Разница (шаг): 2

Результаты рассчета:

  • Арифметическая прогрессия: 43
  • Сумма членов прогрессии: 480
  • Последовательность: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43

Проверяем:

  • Здесь а1 = 5, d = 2. Поэтому а20 = 5 + 19 × 2 = 43
  • S = [(5 + 43) / 2] × 20 = 480

Онлайн-калькулятор делает вычисления намного проще: он экономит время, избавляя от необходимости делать вычисления вручную по формулам.

Используемые источники:

  • https://math24.biz/limit
  • https://bbf.ru/calculators/67/