Работа. Механическая энергия. Кинетическая и потенциальная энергия

Энергия – скалярная величина. Любую энергию в системе СИ измеряют в Джоулях.

В механике рассматривают два вида энергии тел – кинетическую энергию и потенциальную энергию.

Сумма кинетической и потенциальной энергии называется полной механической энергией

Кинетическая энергия

Кинетическая энергия – это энергия движения. Любое тело, находящееся в движении, обладает кинетической энергией.

В русском языке есть глагол «кинуть». Бросим (кинем) камень – он будет находиться в движении, то есть, будет обладать кинетической энергией.

Рассмотрим тело, движущееся по поверхности с какой-либо скоростью (рис 1а).

Рис. 1. Тело, обозначенное на рисунке шаром, движется по горизонтальной поверхности поступательно

Зная массу и скорость тела, можно рассчитать его кинетическую энергию с помощью формулы:

[ large boxed{ E_{k} = m cdot frac{v^{2}}{2}}]

( E_{k} left( text{Дж}right) ) – кинетическая энергия;

( m left( text{кг}right) ) – масса тела;

( v left( frac{text{м}}{c}right) ) – cскорость, с которой тело движется.

Потенциальная энергия

Любое тело, поднятое над поверхностью, обладает потенциальной возможностью упасть и совершить работу. Например, потенциальная энергия поднятого над гвоздем молотка переходит в работу по забиванию гвоздя в доску.

Физики говорят: поднятое на высоту тело обладает потенциальной энергией.

Примечание: Потенциальная энергия возникает у тела из-за притяжения Земли.

Вообще, потенциальная энергия – это энергия взаимодействия (притяжения, или отталкивания). В нашем примере – энергия притяжения тела и Земли.

Рассмотрим тело, находящееся на какой-либо высоте над поверхностью земли (рис 1б).

Рис. 2. Тело находится на небольшой высоте над поверхностью

Можно рассчитать потенциальную энергию тела, зная его массу и высоту тела над поверхностью земли, с помощью формулы:

[ large boxed{ E_{p} = m cdot g cdot  h}]

( E_{p} left( text{Дж}right) ) – потенциальная энергия;

( m left( text{кг}right) ) – масса тела;

( h left( text{м}right) ) – высота, на которую тело подняли над поверхностью земли.

Полная механическая энергия тела

Если сложить кинетическую энергию тела с его потенциальной энергией в какой-либо момент времени, мы получим полную механическую энергию, которой тело обладало в этот момент времени.

Летящий в небе самолет (рис. 3) одновременно будет обладать и кинетической энергией – он движется, и потенциальной энергией – он находится на высоте.

Рис. 3. Самолет движется поступательно, находясь на высоте над поверхностью

Любая энергия – это скаляр (просто число).  Значит, энергия направления не имеет и ее можно складывать алгебраически.

[ large boxed{ E_{k} + E_{p} = E_{text{полн. мех}} }]

( E_{p} left( text{Дж}right) ) – потенциальная энергия тела;

( E_{k} left( text{Дж}right) ) – кинетическая энергия, которой обладает тело;

( E_{text{полн. мех}} left( text{Дж}right) ) – полная механическая энергия этого тела;

Советую далее прочитать о законе сохранения энергии

rabota-300x223.jpgРабота совершается в природе всегда, когда какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Работа силы равна произведению модулей силы и перемещения точки приложения силы и на косинус угла между ними.

А= F·S·соs, где А – работа, (Дж);  F – сила, (Н);  S- перемещение, (м).

Если угол  7_17.jpgравен между векторами F и S равен 90, то А= F·S.

Работа силыэто величина, равная произведению силы, приложенной к телу на величину перемещения. Работа силыскалярная величина. Она может быть положительной, отрицательной или равна нулю. Знак работы определяется знаком косинуса угла между силой и перемещением. Если , то А>0, тогда как косинус острых углов положителен. При  >90работа отрицательна, т.к. косинус тупых углов отрицателен. При =90(сила перпендикулярна перемещению) работа не совершается. В СИ работа измеряется в джоулях (Дж). 1Дж = 1Н·м. Итак, джоуль – это работа, совершаемая силой на перемещении , если направленная сила и перемещения совпадают.

Энергия  характеризует способность тела (или система тел) совершать работу.

Различают два вида механической энергии – кинетическая Ек и потенциальная Еп

Кинетическая энергия -энергия тела, обусловленная его движением (скоростью).kineticheskaya-energiya.png, где m— масса тела (кг), h -высота тела на Землей (м).Это энергия взаимодействия тела с Землей. Потенциальная энергия – энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел.potentsialnaya-energiya.png, где  m— масса тела (кг),V— скорость (м/с2)

Обратим внимание, что у работы и энергии одинаковые единицы измерения. Это означает, что работа может переходить в энергию. Например, для того, чтобы тело поднять на некоторую высоту, тогда оно будет обладать потенциальной энергией, необходима сила, которая совершит эту работу. Работа силы по поднятию перейдет в потенциальную энергию.

Полная механическая энергия замкнутой системы тел равна  сумме потенциальной и кинетической энергий системы: Е = Ек +Еп.

Закон сохранения механической энергии гласитВ изолированно системе, в которой действуют консервативные силы, механическая энергия сохраняется: Е = Ек +Еп = const.ZSE..png

Энергия не создается и не уничтожается, а только превращается из одной формы в другую: из кинетической в потенциальную и наоборот. Учитывая значение Ек и Еп, закон сохранения механической

энергии можно записать так:

В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на Земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха.

—>

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Пусть тело В, движущееся со скоростью , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила , касательная составляющая которой вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона

Следовательно,

Работа, совершаемая телом до полной его остановки равна:

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

(3.7)

Из формулы (3.7) видно, что кинетическая энергия тела не может быть отрицательной ().

Если система состоит из n поступательно движущихся тел, то для ее остановки необходимо затормозить каждое из этих тел. Поэтому полная кинетическая энергия механической системы равна сумме кинетических энергий всех входящих в нее тел:

(3.8)

Из формулы (3.8) видно, что Еk зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой mi приобрело скорость . Другими словами, кинетическая энергия системы есть функция состояния ее движения.

Скорости существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инерциальной системе отсчета, т.к. иначе нельзя было бы использовать законы Ньютона. Однако, в разных инерциальных системах отсчета, движущихся относительно друг друга, скорость i-го тела системы, а, следовательно, его и кинетическая энергия всей системы будут неодинаковы. Таким образом, кинетическая энергия системы зависит от выбора системы отсчета, т.е. является величиной относительной.

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (Еп = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна (Еп = 0 при h = 0); для груза, прикрепленного к пружине, , где — удлинение (сжатие) пружины, k – ее коэффициент жесткости (Еп = 0 при l = 0); для двух частиц с массами m1 и m2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (Еп = 0 при ).

Рассмотрим потенциальную энергию системы Земля – тело массой m, поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. Если тело падает по вертикали, то

где Еno – потенциальная энергия системы при h = 0 (знак «-» показывает, что работа совершается за счет убыли потенциальной энергии).

Если это же тело падает по наклонной плоскости длиной l и с углом наклона к вертикали (, то работа сил тяготения равна прежней величине:

Если, наконец, тело движется по произвольной криволинейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинейных участков . Работа силы тяготения на каждом из таких участков равна

На всем криволинейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.

Таким образом, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

В свою очередь работа dA выражается как скалярное произведение силы на перемещение , поэтому последнее выражение можно записать следующим образом:

(3.9)

Следовательно, если известна функция Еп(r), то из выражения (3.9) можно найти силу по модулю и направлению.

Для консервативных сил

, , ,

или в векторном виде

grad П,

где

grad П (3.10)

Вектор, определяемый выражением (3.10), называется градиентом скалярной функции П; — единичные векторы координатных осей (орты).

Конкретный вид функции П (в нашем случае Еп) зависит от характера силового поля (гравитационное, электростатическое и т.п.), что и было показано выше.

Полная механическая энергия W системы равна сумме ее кинетической и потенциальной энергий:

Из определения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, т.е. зависит только от положения и скоростей всех тел системы.

<center>640-1.png</center>Используемые источники:

  • https://formulki.ru/mehanika/mehanicheskaya-energiya
  • https://kaplio.ru/rabota-mehanicheskaya-energiya-kineticheskaya-i-potentsialnaya-energiya/
  • https://studopedia.ru/4_11_vidi-mehanicheskoy-energii.html