Блоки. Условие равновесия блоков

«Кто овладел творениями Архимеда,

будет меньше удивляться открытиям

самых великих людей нашего времени»

Г.В. Лейбниц

Данная тема посвящена решению задач на тему «Блоки. Условие равновесия блоков».

Задача 1. Какую минимальную силу нужно приложить к концу веревки для подъема мешка цемента массой 50 кг с помощью данной системы блоков? На какую высоту будет поднят мешок при совершении этой силой работы в 2500 Дж? Считать блоки идеальными.

ДАНО:

РЕШЕНИЕ:

Подвижный блок, позволяет получить выигрыш в силе в два раза. Значит, минимальная сила, которую нужно приложить к концу веревки для подъема мешка цемента, равна половине веса этого мешка

Вес мешка цемента:

Тогда минимальная сила

Работа силы определяется по формуле

Согласно «Золотому правилу механики», если мы выигрываем в силе, то во столько же раз проигрываем в пути. Так как подвижный блок дает нам выигрыш в силе в два раза, то в пути мы проиграем также в два раза, то есть высота подъема мешка цемента будет в два раза меньше высоты подъема точки приложения силы

Высоту подъема точки приложения силы определим как отношение работы, совершенной силой, к модулю этой силы

Тогда искомая высота

Ответ: 250 Н; 5 м.

Задача 2. В системе, изображенной на рисунке, масса самого правого груза равна 1,5 кг, а массы всех блоков одинаковы и равны 0,4 кг. Система уравновешена и неподвижна. Определите массы остальных грузов, если массой троса и трением в блоках можно пренебречь.

ДАНО:

РЕШЕНИЕ:

Если трос является невесомым и нерастяжимым, а так же при отсутствии трения в блоках, силы натяжения троса должны быть равны между собой

Поскольку система уравновешена, то:

С другой стороны, трос  передает производимое на него воздействие равномерно по всей своей длине. Так как на блоки с обеих сторон действуют силы натяжения T, а на ось каждого блока действует вес подвешенного на него груза и вес самого блока, то получаем, что в равновесии сила тяжести, действующая на каждый из блоков с грузом, уравновешивается удвоенной силой натяжения троса

Поскольку система уравновешена, то:

Ответ: 2,6 кг.

Задача 3. Плита массой 120 кг была равномерно поднята с помощью подвижного блока на высоту 16 м за 40 с. Считая КПД механизма 80%, а массу блока — 10 кг, определите полную работу и развиваемую мощность. Считать, что в блоке отсутствуют силы трения.

ДАНО:

РЕШЕНИЕ:

Коэффициента полезного действия механизма определяется отношением полезной работы механизма ко всей затраченной им работе

Полезная работа:

Сила тяжести плиты и блока:

Тогда

Затраченная работа:

Затраченная мощность:

Ответ: 26 кДж; 650 Вт.

Задача 4. На рисунке изображена система грузов. Массы тел соответственно равны 0,2 кг и 0,4 кг. Определите силу натяжения нити. Считать нить и блоки идеальными?

ДАНО:

РЕШЕНИЕ:

Так как нить и блоки идеальны, то:

На основании II закона Ньютона:

Так как блок 2 подвижный:

Тогда получаем

Выразим из второго уравнения ускорение a2, подставим полученное выражение в первое уравнение

Преобразуем полученное уравнение и выразим из него искомую силу натяжения нити

 

Ответ: 2 Н.

Блоки относят к простым механизмам. В группу этих устройств, которые служат для преобразования силы, помимо блоков относят рычаг, наклонную плоскость.

ОПРЕДЕЛЕНИЕБлок – твердое тело, которое имеет возможность вращаться вокруг неподвижной оси.

Изготавливаются блоки в виде дисков (колес, низких цилиндров и т. п.), имеющих желоб, через который пропускают веревку (торс, канат, цепь).

Неподвижный блок

Неподвижным называется блок, с закрепленной осью (рис.1). Он не перемещается при подъеме груза. Неподвижный блок можно рассматривать как рычаг, который имеет равные плечи.

pic3597.png

Условием равновесия блока является условие равновесия моментов сил, приложенных к нему:

quicklatex.com-ce27d5e1adefa80a09e0493381fb366a_l3.png

Блок на рис.1 будет находиться в равновесии, если силы натяжения нитей равны:

quicklatex.com-832fe2174e28714aac9e1d6010dc2ea2_l3.png

так как плечи этих сил одинаковы (ОА=ОВ). Неподвижный блок не дает выигрыша в силе, но он позволяет изменить направление действия силы. Тянуть за веревку, которая идет сверху часто удобнее, чем за веревку, которая идет снизу.

Если масса груза, привязанного к одному из концов веревки, перекинутой через неподвижный блок равна m, то для того, чтобы его поднимать, к другому концу веревки следует прикладывать силу F, равную:

quicklatex.com-02d1c3065d06a687caf4347dc455b063_l3.png

при условии, что силу трения в блоке мы не учитываем. Если необходимо учесть трение в блоке, то вводят коэффициент сопротивления (k), тогда:

quicklatex.com-9a14e961dd76409ac753efa6447ae1d0_l3.png

Заменой блока может служить гладкая неподвижная опора. Через такую опору перекидывают веревку (канат), которая скользит по опоре, но при этом растет сила трения.

Неподвижный блок выигрыша в работе не дает. Пути, которые проходят точки приложения сил, одинаковы, равны силы, следовательно, равны работы.

Комбинация неподвижных блоков

Для того чтобы получить выигрыш в силе, применяя неподвижные блоки применяют комбинацию блоков, например, двойной блок. При блоки должны иметь разные диаметры. Их соединяют неподвижно между собой и насаживают на единую ось. К каждому блоку прикрепляется веревка, что она может наматываться на блок или сматываться с него без скольжения. Плечи сил в таком случае будут неравными. Двойной блок действует как рычаг с плечами разной длины. На рис.2 изображена схема двойного блока.

Условие равновесия для рычага на рис.2 станет формула:

Двойной блок может преобразовывать силу. Прикладывая меньшую силу к веревке, намотанной на блок большого радиуса, получают силу, которая действует со стороны веревки, навитой на блок меньшего радиуса.

Подвижный блок

Подвижным блоком называют блок, ось которого перемещается совместно с грузом. На рис. 2 подвижный блок можно рассматривать как рычаг с плечами разной величины. В этом случае точка О является точкой опоры рычага. OA – плечо силы ; OB – плечо силы . Рассмотрим рис. 3. Плечо силы в два раза больше, чем плечо силы , следовательно, для равновесия необходимо, чтобы величина силы F была в два раза меньше, чем модуль силы P:

Можно сделать вывод о том, что при помощи подвижного блока мы получаем выигрыш в силе в два раза. Условие равновесия подвижного блока без учета силы трения запишем как:

Если попытаться учесть силу трения в блоке, то вводят коэффициент сопротивления блока (k) и получают:

Иногда применяют сочетание подвижного и неподвижного блока. В таком сочетании неподвижный блок используют для удобства. Он не дает выигрыша в силе, но позволяет изменять направление действия силы. Подвижный блок применяют для изменения величины прилагаемого усилия. Если концы веревки, охватывающей блок, составляют с горизонтом одинаковые углы, то отношение силы, оказывающей воздействие на груз к весу тела, равна отношению радиуса блока к хорде дуги, которую охватывает веревка. В случае параллельности веревок, сила необходимая для подъема груза потребуется в два раза меньше, чем вес поднимаемого груза.

Золотое правило механики

Простые механизмы выигрыша в работе не дают. Во сколько мы получаем выигрыш в силе, во столько же раз проигрываем в расстоянии. Так как работа равна скалярному произведению сила на перемещение, следовательно, она не изменится при использовании подвижного (как и неподвижного) блоков.

В виде формулы «золотое правило№ можно записать так:

где – путь, который проходит точка приложения силы – путь проходимый точкой приложения силы .

Золотое правило является самой простой формулировкой закона сохранения энергии. Это правило распространяется на случаи, равномерного или почти равномерного движения механизмов. Расстояния поступательного движения концов веревок связаны с радиусами блоков ( и ) как:

Получим, что для выполнения «золотого правила» для двойного блока необходимо, чтобы:

Если силы и уравновешены, то блок покоится или движется равномерно.

Примеры решения задач

ПРИМЕР 1

Задание Используя систему из двух подвижных и двух неподвижных блоков, рабочие поднимают строительные балки, при этом прикладывают силу равную 200 Н. Чему равна масса (m) балок? Трение в блоках не учитывайте.
Решение Сделаем рисунок.

Вес груза, приложенный к системе грузов, будет равен силе тяжести, которая приложена к поднимаемому телу (балке):

Неподвижные блоки выигрыша в силе не дают. Каждый подвижный блок дает выигрыш в силе в два раза, следовательно, при наших условиях мы получим выигрыш в силе в четыре раза. Это значит, что можно записать:

Получаем, что масса балки равна:

Вычислим массу балки, примем :

Ответ m=80 кг

ПРИМЕР 2

Задание Пусть высота, на которую поднимают балки рабочие, в первом примере равна м. Чему равна работа, которую совершают рабочие? Какова работа груза по перемещению на заданную высоту?
Решение В соответствии с «золотым правилом» механики, если мы, используя имеющуюся систему блоков, получили выигрыш в силе в четыре раза, то проигрыш в перемещении составит тоже четыре. В нашем примере это означает, что длина веревки (l) которую рабочим следует выбрать составит длину в четыре раза большую, чем расстояние, которое пройдет груз, то есть:

Работа, которую совершат строители, равна:

Вычислим :

Работа груза (): массы кг (получено в примере 1) равна:

Вычислим , получим:

Ответ =8000 Дж, как и следовало ожидать, выигрыша в работе при использовании системы блоков нет.

Общие сведения о неподвижном блоке

Неподвижный блок относят к простым механизмам (рис.1). Будем считать, что блок вращается без трения. Если веревка натянута и не скользит по блоку, то на блок действуют две силы натяжения веревки ( и ). Точки приложения этих сил на рис. 1 обозначены как A и B, которые расположены на окружности блока.

ОПРЕДЕЛЕНИЕНеподвижным называют блок, ось которого является закрепленной и не перемещается при подъеме грузов.

Условия равновесия блока определяют из условия равновесия моментов сил, которые к нему приложены. Блок на рис.1 будет находиться в равновесии, если силы , так как плечи этих сил одинаковы (ОА=ОВ). Блок – это рычаг, который имеет равные плечи. Блок, который представлен на рис.1 не дает выигрыша в силе, однако он позволяет изменять направление действия силы. Тянуть за веревку, которая идет сверху обычно удобнее, чем за веревку, которая идет снизу.

Вместо блока можно использовать гладкую неподвижную опору. При этом через нее перекидывают веревку или канат, скользящие по опоре, однако при этом существенно увеличивается сила трения.

Неподвижный блок выигрыша в работе не дает. Пути, которые проходят точки приложения сил, одинаковы, равны силы, значит, равны работы.

Комбинация блоков

Для получения выигрыша в силе используют комбинации блоков, например, двойной блок. При этом используют блоки разного радиуса, которые соединяют неподвижно между собой и насаживают на единую ось. К каждому блоку крепится веревка таким образом, что она может наматываться на блок или сматываться с него без скольжения. Плечи сил в данном случае неодинаковы. Двойной блок работает как неравноплечный рычаг. На рис.2 представлена схема двойного блока.

Условием равновесия такого рычага является выражение:

Двойной блок можно считать преобразователем силы. Прикладывая меньшую силу к веревке, приложенной к блоку большего радиуса, получают силу, которая действует со стороны веревки, навитой на блок меньшего радиуса.

Золотое правило механики

Формулировка «Золотого правила»: Отношение перемещений точек, к которым приложены силы в блоке всегда обратно отношению сил, которые приложены к этим точкам.

Для двойного блока, если для равновесия блока сила должна быть в n раз больше по величине, чем сила , то при вращении блока путь, который пройдет точка приложения силы будет в n раз меньше, чем путь который проходит точка приложения силы .

Золотое правило было сформулировано в древности как: «То, что выиграно в силе, проиграно в пути». В математическом виде это правило представим как:

Золотое правило стало первой самой простой формулировкой закона сохранения энергии. Золотое правило механики выполняется для случаев, когда движения простых механизмов равномерно или почти равномерно. Так, при вращении двойного блока концы веревок переместятся на расстояния, которые связаны с радиусами блоков как:

Следовательно, для того чтобы выполнялось золотое правило для двойного блока должно выполняться условие:

Когда силы и будут уравновешены, то блок должен покоиться или двигаться равномерно.

Примеры решения задач на неподвижный блок

ПРИМЕР 1

Задание Через неподвижный блок перекинута нить, к которой привязаны грузы массами: и (m_2″ title=»Rendered by QuickLaTeX.com» />). Какими будут ускорения грузов, если считать, что нить и блок не имеют массы, трения в оси блока нет?
Решение Сделаем рисунок.

Если массой блока можно пренебречь, то силы натяжения нитей, действующие на грузы равны (), обозначим их . В соответствии со вторым законом Ньютона для первого груза имеем:

В проекции на ось Y (рис.3), имеем:

Для второго груза:

Проекция на ось Y дает нам уравнение:

Вычтем уравнение (1.4) из (1.2), получим:

Ответ

ПРИМЕР 2

Задание Решить задачу, которая приведена в примере 1, если масса блока равна m. Блок можно считать однородным диском. Трение не учитывать.
Решение Если следует учитывать массу блока, то натяжения нитей считать равными нельзя. Уравнения поступательного движения грузов запишем как (рис.3):

Проекции этих уравнений на ось Y дают нам систему уравнений:

Уравнение, которое описывает вращение блока:

где – угловое ускорение вращения блока; J – момент инерции блока; – момент силы натяжения нити первой; – момент натяжения второй нити. Ось X выберем перпендикулярную плоскости рисунка и направим ее к нам. Тогда в проекции на эту ось выражения (2.3) имеем:

где . Используя систему уравнений (2.2) и уравнение (2.5), получаем:

Ответ
maxim</span>Jul 17, 2019 · 4 min read</span></span>

Одним из простых механизмов является блок. Блок — это колесо с желобом, по которому пропущена веревка или трос. Используется блок, как и все простые механизмы, для преобразования силы — т.е. изменения направления и модуля приложенной силы.

Блоки бывают подвижные и неподвижные. Рассмотрим каждый случай подробно.

Неподвижный блок — это блок, ось которого (точка О на рисунке) закреплена, и блок при подъеме грузов не опускается и не поднимается.

Такой блок можно рассматривать как рычаг первого рода, у которого оба плеча равны между собой, и равны радиусу колеса блока:

Так как плечи рычага равны, то мы не получим выигрыша в силе. Проверим это, используя формулу равновесия рычага:

плечи рычага

В нашем случае неподвижного блока:

значит:

а следовательно:

Действительно, для того чтобы уравновесить силу на одном конце веревки, перекинутой через блок, нам необходимо приложить такую же силу на другом конце. Поэтому неподвижные блоки используют в том случае, если удобнее изменить направление силы, для совершения работы. Например, удобнее поднимать груз, удерживая веревку при помощи своего веса, поэтому на рисунке экспериментатор использует неподвижный блок.

Используя комбинации из неподвижных блоков можно менять направление силы как угодно:

И в этом случае, используя уже два неподвижных блока — мы не получаем выигрыша в силе, зато изменили направление приложения силы, теперь для поднятия груза силу мы должны приложить в горизонтальном направлении.

Подвижный блок — это блок, ось которого не закреплена, а поднимается вместе с грузом. Изобразим подвижный блок находящийся в равновесии, отметим на рисунке силы, действующие на систему, а также плечи приложения этих сил:

Подвижный блок можно сравнить с рычагом второго рода. Действительно: точка опоры О лежит по одну сторону от точки приложения сил, отрезок ОА плечо силы P

отрезок:

— плечо силы F

Рассчитаем, какой выигрыш в силе мы получим от использования подвижного блока. Для этого воспользуемся формулой равновесия рычага:

а следовательно

Получается, для удержания груза весом Рнеобходимо приложить в два раза меньшую силу. Таким образом, при использовании подвижного блока мы получаем двукратный выигрыш в силе.

Отлично, мы можем поднять груз в два раза тяжелее, чем без использования подвижного блока. Но как же золотое правило механики? Проверим, нарушается ли оно. Изобразим груз, поднятый на высоту h:

Из рисунка видно, что для поднятия груза на высоту hнам необходимо вытянуть веревку длиной

А так как

, очевидно, что для вытягивания груза на высоту h нам необходимо будет вытянуть веревку длиной 2h.

Таким образом, золотое правило механики (действуя на длинное плечо рычага, мы выигрываем в силе, но при этом во столько же раз проигрываем в пути) не нарушается, мы произведем такую же работу, как если бы поднимали груз без использования блока.

Используемые источники:

  • video/26-bloki-usloviie-ravnoviesiia-blokov.html
  • http://ru.solverbook.com/spravochnik/fizika/podvizhnyj-i-nepodvizhnyj-blok/
  • http://ru.solverbook.com/spravochnik/fizika/nepodvizhnyj-blok/
  • https://medium.com/dxdy/одним-из-простых-механизмов-является-блок-619ae7002da0