Кристаллическое строение металлов

Кристаллические тела и их свойства

Подробности
Категория: Молекулярно-кинетическая теория
Опубликовано 14.11.2014 17:19
Просмотров: 18420

Li4vLi4vLi4vLi4vaW1hZ2VzL0ZpemlrYS9rMS5qcGcmdz0yMDAmaD0yMDAmcT05MA==.jpg

В твёрдых телах частицы (молекулы, атомы и ионы) расположены настолько близко друг к другу, что силы взаимодействия между ними не позволяют им разлетаться. Эти частицы могут лишь совершать колебательные движения вокруг положения равновесия. Поэтому твёрдые тела сохраняют форму и объём.

По своей молекулярной структуре твёрдые тела разделяются на кристаллические и аморфные.

Строение кристаллических тел

Li4vLi4vLi4vLi4vaW1hZ2VzL0ZpemlrYS82MC5qcGcmdz0yMDAmaD0yMDAmcT05MA==.jpg

Кристаллическая решётка

Кристаллическими называют такие твёрдые тела, молекулы, атомы или ионы в которых располагаются в строго определённом геометрическом порядке, образуя в пространстве структуру, которая называется кристаллической решёткой. Этот порядок периодически повторяется по всем направлениям в трёхмерном пространстве. Он сохраняется на больших расстояниях и не ограничен в пространстве. Его называют дальним порядком.

Типы кристаллических решёток

Кристаллическая решётка — это математическая модель, с помощью которой можно представить, как расположены частицы в кристалле. Мысленно соединив в пространстве прямыми линиями точки, в которых расположены эти частицы, мы получим кристаллическую решётку.

Расстояние между атомами, расположенными в узлах этой решётки, называется параметром решётки.

В зависимости от того, какие частицы расположены в узлах, кристаллические решётки бывают молекулярные, атомные, ионные и металлические.

От типа кристаллической решётки зависят такие свойства кристаллических тел, как температура плавления, упругость, прочность.

При повышении температуры до значения, при котором начинается плавление твёрдого вещества, происходит разрушение кристаллической решётки. Молекулы получают больше свободы, и твёрдое кристаллическое вещество переходит в жидкую стадию. Чем прочнее связи между молекулами, тем выше температура плавления.

Молекулярная решётка

Li4vLi4vLi4vLi4vaW1hZ2VzL0ZpemlrYS9pbWcxNSAgLmpwZyZ3PTIwMCZoPTIwMCZxPTkw.jpg

В молекулярных решётках связи между молекулами не прочные. Поэтому при обычных условиях такие вещества находятся в жидком или газообразном состоянии. Твёрдое состояние для них возможно только при низких температурах. Температура их плавления (перехода из твёрдого состояния в жидкое) также низкая. А при обычных условиях они находится в газообразном состоянии. Примеры — иод (I2), «сухой лёд» (двуокись углерода СО2).

Атомная решётка

Li4vLi4vLi4vLi4vaW1hZ2VzL0ZpemlrYS8xMjcyNjM1MjA3LmpwZyZ3PTIwMCZoPTIwMCZxPTkw.jpg

В веществах, имеющих атомную кристаллическую решётку, связи между атомами прочные. Поэтому сами вещества очень твёрдые. Плавятся они при высокой температуре. Кристаллическую атомную решётку имеют кремний, германий, бор, кварц, оксиды некоторых металлов и самое твёрдое в природе вещество — алмаз.

Ионная решётка

Li4vLi4vLi4vLi4vaW1hZ2VzL0ZpemlrYS8wMDEzLTAwNy0ucG5nJnc9MjAwJmg9MjAwJnE9OTA=.jpg

К веществам с ионной кристаллической решёткой относятся щёлочи, большинство солей, оксиды типичных металлов. Так как сила притяжения ионов очень велика, то эти вещества способны плавиться только при очень высокой температуре. Их называют тугоплавкими. Они обладают высокой прочностью и твёрдостью.

Металлическая решётка

В узлах металлической решётки, которую имеют все металлы и их сплавы, расположены и атомы, и ионы. Благодаря такому строению металлы обладают хорошей ковкостью и пластичностью, высокой тепло- и электропроводностью.

Чаще всего форма кристалла — правильный многогранник. Грани и рёбра таких многогранников всегда остаются постоянными для конкретного вещества.

Одиночный кристалл называют монокристаллом. Он имеет правильную геометрическую форму, непрерывную кристаллическую решётку.

Примеры природных монокристаллов — алмаз, рубин, горный хрусталь, каменная соль, исландский шпат, кварц. В искусственных условиях монокристаллы получают в процессе кристаллизации, когда охлаждая до определённой температуры растворы или расплавы, выделяют из них твёрдое вещество в форме кристаллов. При медленной скорости кристаллизации огранка таких кристаллов имеет естественную форму. Таким способом в специальных промышленных условиях получают, например, монокристаллы полупроводников или диэлектриков.

Мелкие кристаллики, беспорядочно сросшиеся друг с другом, называются поликристаллами. Ярчайший пример поликристалла — камень гранит. Все металлы также являются поликристаллами. 

Анизотропия кристаллических тел

В кристаллах частицы расположены с различной плотностью по разным направлениям. Если мы соединим прямой линией атомы в одном из направлений кристаллической решётки, то расстояние между ними будет одинаковым на всём этом направлении. В любом другом направлении расстояние между атомами тоже постоянно, но его величина уже может отличаться от расстояния в предыдущем случае. Это означает, что на разных направлениях между атомами действуют разные по величине силы взаимодействия. Поэтому  и физические свойства вещества по этим направлениям также будут отличаться. Это явление называется анизотропией — зависимостью свойств вещества от направления.

Электропроводность, теплопроводность, упругость, показатель преломления и другие свойства кристаллического вещества различаются в зависимости от направления в кристалле. По-разному в разных направлениях проводится электрический ток, по-разному нагревается вещество, по-разному преломляются световые лучи.

В поликристаллах явление анизотропии не наблюдается. Свойства вещества остаются одинаковыми по всем направлениям.

См. также: Кристаллическая решёткаКристаллическая структура хлорида натрияГранат имеет кристаллическую структуру ромба и додекаэдра

Кристалли́ческая структу́ра — такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причём все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции[1].

В простейшем случае мотивная единица состоит из одного атома, например в кристаллахмеди или железа. Возникающая на основе такой мотивной единицы структура геометрически весьма сходна с решёткой, но все же отличается тем, что составлена атомами, а не точками. Часто это обстоятельство не учитывают, и термины «кристаллическая решётка» и «кристаллическая структура» для таких кристаллов употребляются как синонимы, что нестрого. В тех случаях, когда мотивная единица более сложна по составу — состоит из двух или большего числа атомов, геометрического сходства решётки и структуры нет, и смешение этих понятий приводит к ошибкам. Так, например, структура магния или алмаза не совпадает геометрически с решёткой: в этих структурах мотивные единицы состоят из двух атомов.

Основными параметрами, характеризующими кристаллическую структуру, некоторые из которых взаимосвязаны, являются следующие:

  • тип кристаллической решётки (сингония, решётка Браве);
  • число формульных единиц, приходящихся на элементарную ячейку;
  • пространственная группа;
  • параметры элементарной ячейки (линейные размеры и углы);
  • координаты атомов в ячейке;
  • координационные числа всех атомов.

Структурный тип

Основная статья: Список структурных типов

Кристаллические структуры, обладающие одинаковой пространственной группой и одинаковым размещением атомов по кристаллохимическим позициям (орбитам), объединяют в структурные типы.

Наиболее известны структурные типы меди, магния, α-железа, алмаза (простые вещества), хлорида натрия, сфалерита, вюрцита, хлорида цезия, флюорита (бинарные соединения), перовскита, шпинели (тройные соединения).

Литература

  • Ф. Ф. Греков, Г. Б. Рябенко, Ю. П. Смирнов: «Структурная кристаллография», издательство ЛГПИ, Ленинград 1988.

См. также

Эта страница в последний раз была отредактирована 6 ноября 2020 в 18:43. ТолкованиеПеревод

Кристаллическая структура
>См. также: Кристаллическая решётка Кристаллическая структура хлорида натрия

Кристалли́ческая структу́ра — такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причем все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции.

В простейшем случае мотивная единица состоит из одного атома, например в кристаллахмеди или железа. Возникающая на основе такой мотивной единицы структура геометрически весьма сходна с решёткой, но все же отличается тем, что составлена атомами, а не точками. Часто это обстоятельство не учитывают, и термины «кристаллическая решётка» и «кристаллическая структура» для таких кристаллов употребляются как синонимы, что нестрого. В тех случаях, когда мотивная единица более сложна по составу — состоит из двух или большего числа атомов, геометрического сходства решётки и структуры нет, и смещение этих понятий приводит к ошибкам. Так, например, структура магния или алмаза не совпадает геометрически с решёткой: в этих структурах мотивные единицы состоят из двух атомов.

Основными параметрами, характеризующими кристаллическую структуру, некоторые из которых взаимосвязаны, являются следующие:

  • тип кристаллической решётки (сингония, решётка Браве);
  • число формульных единиц, приходящихся на элементарную ячейку;
  • пространственная группа;
  • параметры элементарной ячейки (линейные размеры и углы);
  • координаты атомов в ячейке;
  • координационные числа всех атомов.

Структурный тип

Кристаллические структуры, обладающие одинаковой пространственной группой и одинаковым размещением атомов по кристаллохимическим позициям (орбитам), объединяют в структурные типы.

Наиболее известны структурные типы меди, магния, α-железа, алмаза (простые вещества), хлорида натрия, сфалерита, вюрцита, хлорида цезия, флюорита (бинарные соединения), перовскита, шпинели (тройные соединения).

Литература

  • Ф. Ф. Греков, Г. Б. Рябенко, Ю. П. Смирнов: «Структурная кристаллография», издательство ЛГПИ, Ленинград 1988.

Ссылки

Другие книги по запросу «Кристаллическая структура» >>

Металлы – особая группа элементов в периодической таблице Менделеева. В отличие от неметаллов элементы этой группы являются исключительно восстановителями с положительной степенью окисления, а также обладают пластичностью, твёрдостью, упругостью, что обусловлено кристаллическим строением металлов.

Общее строение

Металлы – твёрдые вещества, имеющие кристаллическое строение. Исключение составляет ртуть – жидкий металл. Кристаллические решётки представляют собой упорядоченные определённым образом атомы металла. Каждый атом состоит из положительно заряженного ядра и нескольких отрицательно заряженных электронов. В атомах металлов недостаточно электронов, поэтому они являются ионами.

Рис. 1. Схема металлической связи.

Свободное движение электронов обусловливает электро- и теплопроводность металлов.

Виды решёток

Элементарные кристаллические ячейки могут иметь различную конфигурацию. В связи с этим выделяют три типа кристаллических решёток:

  • объемно-центрированная (ОЦК) кубическая – состоит из 9 ионов;
  • гранецентрированная (ГЦК) кубическая – включает 14 ионов;
  • гексагональная плотноупакованная (ГПУ) – состоит из 17 ионов.

ОЦК представляет собой куб, в узлах которого находится по атому. В центре куба, на пересечении диагоналей располагается девятый ион. Этот тип характерен для железа, молибдена, хрома, вольфрама, ванадия.

Элементарной кристаллической ячейкой типа ГЦК является куб с ионами в узлах и в середине каждой грани – на пересечении диагоналей. Такое строение имеют медь, серебро, алюминий, свинец, никель.

Третий тип имеет вид гексагональной призмы, в узлах которой находится по шесть ионов с каждой стороны. Посередине между шестью узлами располагается по одному иону. В середине призмы между шестиугольными гранями находится равносторонний треугольник, который составляют три иона.

Рис. 2. Типы решёток.

Металл может содержать большое количество дефектов атомного строения. Дефекты влияют на свойства металла.

Характеристика решётки

Кристаллические решётки характеризуются компактностью или степенью наполненности. Компактность определяют показатели:

  • параметр решётки – расстояние между атомами;
  • число атомов;
  • координационное число – количество соседних ячеек;
  • плотность упаковки – отношение объёма, занимаемого атомами, к полному объёму решётки.

При подсчёте количества атомов следует помнить, что атомы в узлах и на гранях входят в состав соседних ячеек.

Рис. 3. Кристаллические ячейки составляют решётку.

Что мы узнали?

Узнали кратко об атомно-кристаллическом строении металлов. Металлы – твёрдые кристаллические вещества. Единицей решётки является элементарная кристаллическая ячейка. Благодаря металлическим связям ионы в узлах ячеек удерживаются на одинаковом расстоянии. Различают три типа кристаллических решёток – ОЦК, ГЦК и ГПУ, отличающихся количеством атомов и геометрической формой.

Тест по теме

  1. Вопрос 1 из 5

    Из чего состоит кристаллическая решётка металла?</h3>

    • <label>Ядра и электронов</label>
    • <label>Нейронов и протонов</label>
    • <label>Ионов</label>
    • <label>Катионов</label>

(новая вкладка)

Kristallicheskie-reshetki.jpg

Содержание:

Определение кристаллической решеткиВиды кристаллических решеток</li>Ионная кристаллическая решетка</li>Атомная кристаллическая решетка</li>Молекулярная кристаллическая решетка</li>Металлическая кристаллическая решетка</li>Кристаллические решетки, видео

<a2>ределение кристаллической решетки</a2>

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

<a2>ды кристаллических решеток</a2>

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • Металлическая кристаллическая решетка.

Далее более подробно опишем все типы кристаллической решетки.

<a2>нная кристаллическая решетка</a2>

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

<a2>омная кристаллическая решетка</a2>

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные ковалентные связи. Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

<a2>лекулярная кристаллическая решетка</a2>

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

<a2>таллическая кристаллическая решетка</a2>

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

<a2>исталлические решетки, видео</a2>

И в завершение подробное видео пояснения о свойствах кристаллических решеток.

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Страница про автора

Эта статья доступна на английском – Crystal Lattice in Chemistry.

—> </li>Используемые источники:

  • http://ency.info/materiya-i-dvigenie/molekulyarno-kineticheskaya-teoriya/358-kristallicheskie-tela-i
  • https://wiki2.org/ru/кристаллическая_структура
  • https://dic.academic.ru/dic.nsf/ruwiki/234532
  • https://obrazovaka.ru/himiya/kristallicheskoe-stroenie-metallov-kratko.html
  • https://www.poznavayka.org/himiya/kristallicheskie-reshetki-v-himii/