Состав и характеристика атомного ядра

Большая часть массы всех элементов на Земле сосредоточена в элементарных частицах, называемых протонами и нейтронами (общее название – нуклоны). Поговорим кратко о протонах и нейтронах в составе атомных ядер.

sostav-atomnogo-yadra.jpg

Протоны и нейтроны

В самом начале XXв в опытах Э. Резерфорда было установлено, что практически вся масса и положительный заряд атома сосредоточен в компактном ядре. Вокруг ядра по весьма далеким (по отношению к размеру ядра) орбитам вращаются электроны. Атом в целом нейтрален, потому, что заряд электронов и ядра одинаков.

fizika-136863-planetarnaya-model-atoma.jpg

Рис. 1. Планетарная модель атома.

Дальнейшие опыты Э. Резерфорда привели в 1919 г к открытию протона, и к пониманию, что весь положительный заряд ядра обеспечивается наличием в его составе протонов. Протон – это достаточно тяжелая частица, тяжелее электрона в 1830 раз, что примерно равно одной атомной единице массы. Его положительный заряд по модулю равен заряду электрона. Ядро самого легкого элемента – водорода – имеет единичный заряд, и состоит из одного протона, вокруг которого обращается один электрон.

В 1930 году Д. Чедвиком был открыт нейтрон. Это еще одна элементарная частица, почти с такой же массой, как у протона, но не имеющая заряда, и входящая в состав ядер.

Ядерные Силы

Нуклоны удерживает вместе особое Сильное (или ядерное) взаимодействие. Особенность ядерного взаимодействия в том, что его переносчики (глюоны и составленные из них пионы) – не только переносят сильное взаимодействие, но и сами в нем участвуют. Поэтому они не могут далеко удаляться друг от друга, и радиус действия ядерных сил не превышает размеры ядер. Эти силы значительно больше кулоновских сил отталкивания, и поэтому ядра, содержащие много положительных протонов стабильны.

fizika-136863-yadernye-sily.jpg

Рис. 2. Ядерные силы.

Эти же силы определяют стабильность нейтрона в составе ядер. Свободный нейтрон – это нестабильная частица с периодом полураспада около 600 сек. Ядерные взаимодействия делают распад нейтрона в ядрах с малым их числом $N$ энергетически невыгодным.

Протонно-нейтронная модель ядра

Таким образом, в состав атомного ядра входят протоны и нейтроны, которые удерживаются вместе короткодействующим Сильным взаимодействием. Число протонов в ядре $Z$ соответствует номеру элемента в Периодической Системе Менделеева. Общее число нуклонов в ядре $A$ соответствует массовому числу элемента:

$$A=Z+N$$

fizika-136863-protonno-neytronnaya-model-yadra.jpg

Рис. 3. Протонно-нейтронная модель ядра.

Чем больше протонов в ядре – тем больше силы кулоновского отталкивания, и тем менее стабильно ядро. Наличие $N$ нейтронов в ядре стабилизирует его.

Для тяжелых элементов, содержащих в ядре много протонов, число нейтронов должно быть еще больше. Так, например, ядро наиболее распространенного в природе свинца-208 содержит 82 протона и 126 нейтронов. Однако, если число нейтронов становится слишком большим, становится энергетически выгоден распад нейтрона, а с распадом нейтрона уменьшаются ядерные силы, и ядро распадается. Именно поэтому наиболее стабильными являются ядра со средним числом нейтронов и протонов.

Что мы узнали?

Ядро атома состоит из элементарных частиц – протонов и нейтронов, которые удерживаются вместе особыми ядерными силами. Число протонов в ядре соответствует номеру элемента в Периодической системе. Общее число нуклонов – соответствует массовому числу.

Тест по теме

  1. Вопрос 1 из 5

    Протон был открыт…</h3>

    • <label>И. Ньютоном</label>
    • <label>А. Беккерелем</label>
    • <label>Э. Резерфордом</label>
    • <label>И.Курчатовым</label>

(новая вкладка) —>

Количественные показатели в радиоэкологии.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид – токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний – альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе – токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.Активность – количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности – Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения – количественная мера воздействия излучения на объект. В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы – это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека – основной дозовый предел (1 мЗв/год) – вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10-13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов – ядерных протонов (Z – число протонов) и ядерных нейтронов (N – число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.

Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.

Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10-13см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

<center>640-1.png</center>

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов – «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида АХ).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96Sr, 96Y, 96Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234U,235U, 236U,238U.

Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36S, 37Cl, 38Ar, 39K, 40Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде ZХМ, где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3Н, 14С, 137Сs, 90Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 – 15Р32, такое же массовое число имеет и один из изотопов серы – 16S32.

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

<center>640-1.png</center>

Тема «Ядерная физика»

38.1. Характеристики ядра. Ядерные силы . Модели атомного ядра

Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. (см. лекцию с опытами Резерфорда).Атомное ядро состоит из элементарных частиц — протонов ( p) и нейтронов (n), которые считаются двумя зарядовыми состояниями одной частицы — нуклона (от лат. nucleus — ядро).

Общее число нуклонов в атомном ядре A называетсямассовым числом. Заряд ядра равен величине Ze , где e— заряд протона, Zзарядовое число ядра, равное числу протонов в ядре (совпадает с порядковым номером химического элемента в Периодической системе элементов — атомным номером). Ядро химического элемента X с атомным номером Z и массовым

числом A обозначается .

Изотопами называются ядра с одинаковым атомным номером Z(зарядом или числом протонов), но разными A (т. е. разным числом нейтронов N = A — Z). Например, изотопы водорода (Z= 1): протий — (Z =1, N = 0) , дейтерий — (Z =1, N =1) , тритий — (Z =1, N = 2).

Изобарами называются ядра с одинаковым массовым числом A, но разными Z . Например, .

Изотонами называются ядра с одинаковым числом нейтронов N = A Z . Например, .

Размер ядра характеризуется радиусом ядра, имеющим условный смысл ввиду размытости границ ядра. Эмпирическая формула для радиуса ядра(38.1) , где R0 = (1,3 ÷1,7)10-15 м, может быть истолкована как пропорциональность объема ядра числу нуклонов в нем. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (≈1017 кг/м3).

Поскольку большинство ядер устойчиво, то между нуклонами существует особоеядерное (сильное) взаимодействие — притяжение, которое обеспечивает устойчивость ядер, несмотря на отталкивание одноименно заряженных протонов.

Энергией связи ядра Eсв называется физическая величина, равная работе, которую надо совершить, чтобы расщепить ядро на составляющие его нуклоны, не сообщая им кинетической энергии. Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая же энергия, какую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех нуклонов в ядре и их энергией в свободном состоянии. Энергия связи нуклонов в атомном ядре:

(38.2)

Масса Δm, соответствующая энергии связи: (38.3)

называется дефектом массы ядра.

На эту величину уменьшается масса всех нуклонов при образовании из них ядра.

Удельной энергией связи называется энергия связи, приходящаяся на один нуклон:

(38.4). Она характеризует устойчивость (прочность) атомных ядер, т. е.чем больше Δε св , тем прочнее ядро.

Собственный момент импульса ядра спин ядра— векторная сумма спинов нуклонов (равен 1/2) и орбитальных моментов импульса нуклонов (момента импульса, обусловленных движением нуклонов внутри ядра). Спин ядра квантуется по закону:

(38.5), где I — спиновое квантовое число, которое принимает значения 0, ½, 1, 3/2, … .

Атомное ядро кроме спина обладает магнитным моментом (38.6), где — коэффициент пропорциональности, называемый ядерным гиромагнитным отношением. Единицей магнитных моментов ядер служит ядерный магнетон: .

Ядерный магнетон в раз меньше магнетона Бора, поэтому магнитные свойства атомов определяются в основном магнитными свойствами его электронов.

Наличие магнитного момента ядра объясняетсверхтонкую структуру в спектрах атомов во внешнем магнитном поле.

Свойства ядерных сил:

1) ядерные силы являются силами притяжения;

2) ядерные являются короткодействующими — их действие проявляется только на расстояниях порядка 10 –15 м;

3) ядерным силам свойственна зарядовая независимость: притяжение между любыми двумя нуклонами одинаково независимо от зарядового состояния нуклонов (протонного или нейтронного); ядерные силы имеют неэлектрическую природу;

4) ядерным силам свойственно насыщение: каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов;

5) ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон — ядро изотопа дейтерия — только при условии

параллельной ориентации их спинов;

6) ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.

1. Капельная модель. Эта модель основана на аналогии между поведением молекул в капле жидкости и нуклонов в ядре — короткодействие ядерных взаимодействий, одинаковая плотность ядерного вещества в разных ядрах (несжимаемость), свойство насыщения ядерных сил. Она трактует ядро как каплю электрически заряженной несжимаемой жидкости, подчиняющуюся законам квантовой механики.

2. Оболочечная модель.В этой модели нуклоны считаются движущимися независимо друг от друга в усредненном центрально-симметричном поле. В соответствии с этим имеются дискретные энергетические уровни, заполняемые нуклонами с учетом принципа Паули. Эти уровни группируются в оболочки, в каждой из которых может находиться определенное число нуклонов. Ядра с полностью заполненными оболочками являются наиболее устойчивыми — магические ядра, у которых число протонов Z или нейтронов N равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 126.

Ядра, у которых магическими являются и Z , и N , называются дважды магическими. Дважды магических ядер известно всего пять: .

38.2. Радиоактивность и его виды. Закон радиоактивного распада

Самопроизвольное изменение состава атомного ядра, происходящее за время существенно большее характерного ядерного времени 10 -22 с (время, в течение которого α-частица пролетает диаметр ядра) называют радиоактивностью .

Радиоактивным распадомназывается естественное радиоактивное превращение ядер, происходящее самопроизвольно. Различают:

1. α — распад

2. β — распад

3. Спонтанное деление атомных ядер

4. Протонный распад и др. …

Остановимся более подробно на первых трех видах радиоактивности.

α — распад — самопроизвольный процесс испускания α-частиц, в результате которого массовое число ядра уменьшается на единицу, а зарядовое на две единицы заряда.

Схема реакции: (38.7)

β — распад – самопроизвольный процесс, в котором нестабильное ядро превращается в ядро изобар (A – cst) – меняет заряд в результате превращения нейтрона в протон или наоборот протона в нейтрон). Различают:

а) Электронный β — распад – ядро испускает электрон (38.8)

image002.jpg

где mе — масса электрона, а.е.м. — атомная единица массы. Значение массы протона приведено в энергетиче­ских единицах как принято в ядерной физике.

Протон имеет спин s = 1/2 и собственный магнитный момент

где mя— ядерный магнетон (единица, в которой измеряют маг­нитные моменты нуклонов):

Ядерный магнетон в 1836 раз меньше магнетона Бора, т. е. соб­ственный магнитный момент протона в 660 раз меньше магнит­ного момента электрона.

image008.jpgНейтрон (n). Его электрический заряд равен нулю, а масса близка к массе протона:

что на 0,14% или 2,5 mе больше массы протона.

Атомная единица массы равна 1/12 массы нейтрального атома 12С, т. е. 1 а.е.м. = 1,66·10-24 г или 931,50 МэВ.

Спин нейтрона s = 1/2 и, несмотря на отсутствие электриче­ского заряда, нейтрон имеет магнитный момент

image010.jpg

Знак минус означает, что «направления» спина и магнитного момента у нейтрона взаимно противоположны.

В свободном состоянии нейтрон нестабилен и самопроизво­льно распадается, превращаясь в протон и испуская электрон и еще одну частицу, нейтрино (v):

image012.jpg

Период полураспада (время, за которое распадается половина первоначального количества нейтронов) равно примерно 12 мин.

Характеристики атомного ядра. Основными величинами, ха­рактеризующими атомное ядро, являются зарядовое Z и массо­вое А числа. Число Z равно количеству протонов в ядре и опре­деляет его электрический заряд Ze. Его также называют атом­ным номером. Массовое число А определяет число нуклонов в ядре. Число нейтронов в ядре

N = А — Z.

Символически эти характеристики ядра обозначают так:

image014.jpg

где под X имеется в виду химический символ элемента, которо­му принадлежит данное ядро, например, Н,Hе,U и т. д.

Конкретные атомы с данным числом протонов и нейтронов в ядре принято называть нуклидами. Нуклиды с одинаковым числом протонов (т. е. принадлежащие одному химическому элементу) называ­ют изотопами.

Атомы изотопов обладают практически очень близкими фи­зико-химическими свойствами. Это связано с тем, что на строе­ние электронной оболочки атома ядро влияет в основном только своим электрическим полем. У изотопов эти поля одина­ковы, за исключением некоторых случаев. Сильнее всего это различие у трех нуклидов:Н,Н и H, ядра которых также существенно отличаются друг от друга. Поэтому этим трем нуклидам присвоены разные названия — соответственно обыч­ный водород, дейтерий и тритий, а ядра дейтерия и трития — дейтрон (d) и тритон (t).

У разных атомов число изотопов различно, среди них име­ются стабильные и радиоактивные.

Размеры ядер. У атомного ядра (как и у всякой квантовой системы) нет четко определенной границы. В экспериментах по рассеянию электронов и нуклонов на ядрах установлено, что в каждом ядре имеется внутренняя об­ласть, в которой плотность ρ ядерного вещества практически постоянна, и поверхностный слой, где эта плот­ность падает до нуля. Типичное рас­пределение концентрации нуклонов в зависимости от расстояния до центра ядра, т. е. п(г) показано на рисунке

image029.jpg

где rо — радиус ядра — расстояние от центра ядра, на котором концентра­ция нуклонов падает в два раза.

В первом приближении ядро можно считать сферическим радиуса

image031.jpg

где 1 фм = 10-13 см. Из этой формулы вытекает важный вывод: масса ядра, определяемая массовым числом А, пропорциональ­на его объему V, поскольку V ~ г~ А. Следовательно, плот­ность вещества во всех ядрах примерно одинакова и, как пока­зывает расчет, равна ρ 2·1014 г/см3 .

Масса и энергия связи ядра

Масса ядра не является аддитивной величиной: она не равна сумме масс образующих ядро нуклонов. Причиной является си­льное взаимодействие нуклонов в ядре. Из-за этого взаимодей­ствия для полного разделения ядра на отдельные свободные нуклоны необходимо произвести минимальную работу, которая и определяет энергию связи ядра Есв. Наоборот, при образова­нии ядра из свободных нуклонов эта энергия выделяется (в виде, например, электромагнитного излучения).

<center>

Для упрощения расчетов вводят понятие дефект массыкак разность между массой (в а.е.м.) и массовым чис­лом А ядра или нуклона: = m-А.

где N = А-Z. Соответственно и в таблицах приводят не массы нуклидов, а их дефекты масс.

Удельная энергия связи. Так называют энергию связи, при­ходящуюся в среднем на один нуклон, т.е. Есв. Эта величина характеризует меру прочности ядра: чем больше Есв, тем ядро прочнее.

Энергия связи электронов в атомах порядка 10 эВ, что пренебрежимо мало с величиной уде­льной энергии связи ядра.

Удельная энергии связи Есв за­висит от массового числа А. График соответствующей зависи­мости показан на рисунке.

image042.jpg

Удельная энергия связи ядер почти не зависит от массового числа А и равна при­мерно 8 МэВ. Приближенная не­зависимость удельной энергии связи от А означает, что ядерные силы обладают свойством насы­щения. Оно заключается в том, что каждый нуклон взаимо-действует только с ограниченным чис­лом соседних нуклонов.

Отсюда также следует, что ядерные силы являются коротко­действующими с радиусом порядка среднего расстояния между нуклонами в ядре (~10-13 см).

Наиболее прочными являются ядра с массовыми числами А~ 50÷60, т. е. элементов от Сг до Zn.

</center><center>Используемые источники:

  • https://obrazovaka.ru/fizika/sostav-atomnogo-yadra-kratko.html
  • https://studopedia.ru/4_170109_stroenie-atomnogo-yadra.html
  • https://fiziku5.ru/yadernye-sily-modeli-atomnogo-yadra/
  • https://studopedia.ru/1_122338_sostav-i-harakteristika-atomnogo-yadra.html